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A morphological instability of a mushy layer due to a forced flow in the melt is
analysed. The instability is caused by flow induced in the mushy layer by Bernoulli
suction at the crests of a sinusoidally perturbed mush–melt interface. The flow in
the mushy layer advects heat away from crests which promotes solidification. Two
linear stability analyses are presented: the fundamental mechanism for instability is
elucidated by considering the case of uniform flow of an inviscid melt; a more complete
analysis is then presented for the case of a parallel shear flow of a viscous melt. The
novel instability mechanism we analyse here is contrasted with that investigated by
Gilpin et al. (1980) and is found to be more potent for the case of newly forming sea
ice.

1. Introduction
The change of phase from liquid to solid can be significantly influenced by fluid

motions of the liquid. For example, there are many circumstances in which the solid–
liquid interface becomes rippled in the presence of a flow. This has been observed
on the underside of ice forming on top of a flowing river (Ashton & Kennedy 1972),
during the freezing of a water pipe (Özisik & Mulligan 1969) and in a cylindrical
annulus with a heated inner wall and a cooled outer wall on which solid has formed
(Fang et al. 1985). In the last case, buoyancy forces are primarily responsible for
the ripple-forming instability. In the other cases, the instability is due entirely to
the externally forced flow. Gilpin, Hirata & Cheng (1980) have shown that such
an instability of a solid–liquid interface requires a phase shift in the range π/2 to
π between the incipient ripples and the heat transfer from the melt. A phase shift
in this range can occur in turbulent flow over a wavy surface (Ashton 1972) for
certain values of the Reynolds number. Gilpin et al. (1980) used the semi-empirical
relationship for heat transfer determined by Ashton (1972) in a linear stability analysis
of a planar, stationary, solid–liquid interface and determined conditions on the relative
heat transfer from the melt and through the solid for instability to occur. Although
this was a linear analysis, it relied on a heat-transfer correlation for flow over a
finite-amplitude surface corrugation. Experiments (Gilpin et al. 1980) show that quite
a large initial perturbation to a planar interface is required in practice to trigger an
instability by this mechanism.

In this paper, we analyse the stability of an interface between a mushy layer growing
from a flowing melt. A mushy layer is a porous medium comprising a matrix of solid
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crystals through which the residual melt can flow. Mushy layers form very commonly
when solid grows from a binary melt or mixture (see Huppert 1990 for examples). Sea
ice, which grows from the salty ocean, is a mushy layer with a liquid volume fraction
of about 10%. Ice growing from a river containing pollutants or high concentrations
of dissolved minerals is also likely to be mushy. We find that an entirely different
and truly linear mechanism can cause ripples on the interface between a mushy
layer and a melt. The instability we analyse relies on a flow through the mushy
layer induced by the Bernoulli effect causing low pressure at the crests of incipient
corrugations. The flow interacts with the thermal gradients driving solidification to
cause an instability.

In § 2, we write down the model equations we use to describe the mushy layer and
fluid region. These have a simple steady solution in which the mush–liquid interface
is planar, the mushy layer is stagnant and there is a parallel flow of the liquid. We
present perturbation equations and solve them in § 3 for the case of a uniform flow
of an inviscid melt in which the no-slip condition is relaxed; this illuminates the
fundamental mechanisms controlling the instability. After making a simplification of
the model of the mushy region in § 4, which we show is not detrimental to the study
of the instability, we discuss the stability of the mush–liquid interface in the presence
of a viscous shear flow in § 5. In this analysis, the hydrodynamic modes in the melt
(Drazin & Reid 1981) are suppressed by considering the steady flow past a wavy
boundary. This was done in order to focus on the morphological instability induced
by the flow which does not require the existence of the hydrodynamic modes and
can be triggered at Reynolds numbers lower than that required for their existence.
Though we believe the physical mechanisms that we describe are important at higher
Reynolds numbers, the existence of the hydrodynamic modes may then render our
calculations inaccurate. In § 6, we compare the instability mechanism described in
this paper with that of Gilpin et al. (1980), applying both analyses to the case of
shear flow beneath growing sea ice. General conclusions of the study are presented
in § 7.

2. Formulation
The physical situation we consider is shown schematically in figure 1. We consider

a two-dimensional system in which a binary alloy is solidifying at a constant rate
V . There is a mushy layer in the region 0 < z < ζ(x, t) sandwiched between a
completely solid region and a completely liquid region. The liquid region is taken
to be semi-infinite with a far-field composition C0 and temperature T∞ greater than
the liquidus temperature TL(C0), which is the equilibrium freezing temperature of
the alloy. We fix our coordinates in a frame of reference moving downwards with
the solidification speed V relative to the solid phase. For clarity of presentation, we
consider the thermal properties and densities of the solid and liquid phases to be
the same. We neglect buoyancy forces, which enables us to focus attention on the
effects of forced convection alone. We ignore the diffusion of solute in the mush and
liquid, an approximation that is valid if the Lewis number (Le = κ/D), the ratio
of thermal to solutal diffusivities, is very much greater than unity, which is typical
of liquids and solids. The mushy layer is assumed to be in local thermodynamic
equilibrium so that the temperature T is related to the composition C via a liquidus
relationship, which we assume to be linear; T = TL(C) ≡ Γ C where Γ is a constant.
The equations describing the mushy region are given in detail in Worster (1992a).
Here we non-dimensionalize the governing equations by scaling lengths with κ/V and
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Figure 1. The geometry of the mushy-layer system. The mushy layer is sandwiched between a
layer of impermeable solid and the melt. The solid–mush interface is assumed planar and is at the
eutectic temperature TE. The mush–melt interface is at the liquidus temperature TL(C0) > TE. The
melt region is semi-infinite with far-field temperature T∞ > TL(C0) and is of uniform composition
C0. We consider the mushy layer to advance into the melt at the constant rate V . In the basic state,
the mush–melt interface is flat and the mushy layer is stagnant; any parallel flow in the melt does
not affect this basic state. In the stability analyses, we perturb the mush–melt interface (dashed line)
and calculate its linear evolution.

times with κ/V 2. The non-dimensional form of the conservation equations for heat
and solute in the mushy layer is then(

∂

∂t
− ∂

∂z

)
(θ −Sφ) + u · ∇θ = ∇2θ, (2.1a)

(
∂

∂t
− ∂

∂z

)
[(1− φ)θ + Cφ] + u · ∇θ = 0. (2.1b)

In these equations, φ is the local solid fraction in the mushy layer and θ represents
both the dimensionless temperature and composition:

θ =
T − TL(C0)

∆T
=
C − C0

∆C
, (2.2)

where ∆T = TL(C0)− TE and ∆C = C0 − CE . The dimensionless parameters are the
Stefan number

S =
L
c∆T

(2.3)

and a composition ratio

C =
Cs − C0

C0 − CE , (2.4)

where L is the latent heat, c is the specific heat capacity, Cs is the composition of
the solid phase (often nearly zero), and TE and CE are the eutectic temperature and
composition respectively.

We take the composition in the liquid region to be uniform and equal to C0, while
the usual advection–diffusion equation,(

∂

∂t
− ∂

∂z

)
θ + u · ∇θ = ∇2θ, (2.5)

describes local conservation of heat.
These equations describe the heat and solute fields in the mushy and liquid regions

but we also need a specification for the flow in the two regions. In common with
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many previous studies, for example Hills, Loper & Roberts (1983), Fowler (1985) and
Worster (1991), we treat the mushy layer as a porous medium and model the flow
through it using Darcy’s Law,

u = −Π
µ
∇p, (2.6)

where µ is the dynamic viscosity and p is the pressure. Though the permeability Π is
in general a second-rank tensor, we consider it here to be locally isotropic, though a
function of the local solid fraction, and shall therefore represent it by the scalar Π(φ).
The flow in the liquid region is incompressible and governed by the Navier–Stokes
equations, (

∂

∂t
− ∂

∂z

)
u+ u · ∇u = −1

ρ
∇p+ ν∇2u, (2.7)

where ν = µ/ρ is the kinematic viscosity.
We apply the following boundary conditions to the mush–melt system:

θ = −1 (z = 0), (2.8a)

θ = 0, φ = 0, [θ]ml = 0, φSvn = [n · ∇θ]ml (z = ζ), (2.8b–e)

θ −→ θ∞ (z −→ ∞), (2.8f )

where θ∞ = (T∞−TL(C0))/∆T is the dimensionless far-field temperature, n is the unit
normal pointing into the melt, vn is the normal velocity of the interface, m and l refer
to quantities belonging to the mushy layer and liquid respectively and [ ]ml refers to
the jump across the mush–liquid interface. The condition on the solid fraction (2.8c) is
discussed in Worster (1992b) and follows from an assumption of marginal equilibrium
(Worster 1986). Since the solid fraction is zero at the mush–liquid interface, there is no
latent heat release at the interface, and the Stefan condition, (2.8e), simply expresses
continuity of heat flux. In §§ 4 and 5 an approximate model is examined in which the
solid fraction is assumed to be uniform in the mushy layer. In this case, the left-hand
side of (2.8e) is retained.

The solid–mush interface is assumed planar and, since it is impermeable, the normal
flow there is zero. At the mush–liquid interface, we require continuity of flux and apply
continuity of pressure and the no-slip condition on the liquid side. These conditions
are

w = 0 (z = 0), (2.9a)

[u · n]ml = 0, [p]ml = 0, ul · τ = 0 (z = ζ), (2.9b–d )

where τ is any vector tangent to the interface. We note that replacement of the no-
slip condition with the Beavers–Joseph boundary condition (Beavers & Joseph 1967)
allows a small slip flow at the mush–melt interface. However, a scaling analysis shows
that the slip velocity is insignificant relative to the far-field flow, and we shall ignore
it. In § 3, the fundamental mechanism of the instability is explored by considering
a uniform flow of an inviscid melt and thus the no-slip condition is abandoned. A
viscous melt is considered in the subsequent analysis, however, and the condition is
reinstated.

This system admits a steady basic state in which the mush–liquid interface is
planar, see figure 1. We allow for an arbitrary parallel shear flow in the liquid region
of the form u = (u(z), 0) that satisfies the no-slip condition but the mushy layer is
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stagnant. Note that the only coupling between the flows in the liquid and mushy
layer is through the continuity of normal mass flux and the pressure field. There is
therefore no tendency for the parallel flow in the liquid to induce a flow in the mushy
layer while the interface remains planar. The solution for the basic state is given in
Worster (1992a), the temperature field being given implicitly by an expression of the
form z = f(θ). In order to simplify the stability analysis we assume here that C � 1,
which allows a linear decoupling of the thermal and solutal field equations in the
mush and admits an explicit solution in the mushy layer. This condition is slightly
less restrictive than the near-eutectic approximation used by Fowler (1985), Emms
& Fowler (1994) and Anderson & Worster (1996), which involves the further limit
θ∞ � 1. The basic-state solution is then

θ =
θ∞
Ω

(1− e−Ω(z−ζ)), (2.10a)

φ = − θC (2.10b)

in the mush and

θ = θ∞(1− e−(z−ζ)) (2.11)

in the liquid. The mushy-layer depth is

ζ =
1

Ω
ln

(
1 +

Ω

θ∞

)
, (2.12)

in which the parameter

Ω = 1 +
S
C (2.13)

is a measure of the linear coupling of the heat and solute equations in the mushy
layer.

A particular, simplifying feature of the limit C � 1 is that the solid fraction is small
(see equation (2.10b)) and the permeability is approximately uniform (Anderson &
Worster 1996). Darcy’s equation (2.6) then shows that the velocity field is irrotational
in this limit, which is exploited below.

3. Linear stability analysis with uniform flow in the melt
The mechanism for instability is most simply revealed by the following analysis in

which we assume the liquid external to the mushy layer to be inviscid and its flow
to be irrotational. Since the liquid is inviscid, we abandon the no-slip condition. The
basic state we perturb is one in which the flow in the liquid region is uniform and
parallel to the interface; it is thus not liable to shear instability. Since the instability
we investigate is an interfacial instability of the mush–melt interface, it is little affected
by the solid–mush interface (as demonstrated by calculations for an infinite mushy
layer, Feltham 1997). Thus, for simplicity, perturbations to the solid–mush interface
are ignored. We introduce normal modes by writing the dependent variables in the
form

(ζ, θ, φ, u) = (ζ0, θ0, φ0, u0) + ε(ζ1, θ1, φ1, u1)e
σt+ikx (3.1)

in which the variables θ0, φ1, etc. are all functions of z alone, ζ0 and ζ1 are constants
and the subscript 0 refers to the basic-state solution. Since the flow is taken to be
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irrotational, there is a velocity potential

Φl = Ux+ εΦl1e
σt+ikx (3.2)

in the liquid region and a potential

Φm = εΦm1 eσt+ikx (3.3)

in the mushy layer, where U = U/V is the ratio of the forcing flow to the growth
rate. These each satisfy Laplace’s equation

(D2 − k2)Φm,l1 = 0, (3.4)

which is solved in place of (2.6) and (2.7), where D ≡ d/dz.
The no-slip condition (2.9d ) cannot be applied to the flow of inviscid fluid. The

remaining conditions on the flow (2.9a–c) become

DΦm1 = 0 (z = 0), (3.5a)

DΦl1 −DΦm1 − ikUζ1 = 0 (z = ζ0), (3.5b)

−Pr
Da

Φm1 + ikUΦl1 + (σ −D)Φl1 = 0 (z = ζ0) . (3.5c)

In deriving (3.5c) from (2.9c), the pressure in the liquid region is determined from
linearizing Bernoulli’s equation, which is

ρ
∂Φl

∂t
+ p+ 1

2
ρ|∇Φl |2 = F(t), (3.6)

where F(t) is an unknown function of t only. Additionally, we require

Φl1 −→ 0 (z −→ ∞). (3.7)

The Darcy number

Da =
Π

(κ/V )2
(3.8)

is the ratio of the permeability of the mushy layer (proportional to the square of the
interstitial lengthscale) to the square of the diffusion length κ/V ; and the Prandtl
number is Pr = ν/κ. We make use of the fact that U is typically very large (≈ 104

to 105) and the Darcy number typically very small (≈ 10−8) to simplify the boundary
conditions (3.5b,c) to

DΦl1 ∼ ikUζ1, Φm1 ∼ ikU(Da/Pr)Φl1 (z = ζ0). (3.9a, b)

The first of these implies that Φl1 = O(U). With this, the second condition shows
that Φm1 = O(DaU2). We proceed under the assumption that DaU2 = O(1) so that,
for example, Φm1 � Φl1 and the asymptotic approximations that led to (3.9) are
self-consistent. With these assumptions, the solutions for the velocity potentials are

Φl1 = −iUζ1e
−k(z−ζ0), (3.10a)

Φm1 =
DaU2

Pr
kζ1 cosh(kz)/ cosh(kζ0). (3.10b)

We see that (3.10a) is just the velocity potential for flow over a solid wavy boundary.
This is because, on the scale of the flow in the liquid region, the mushy layer is
effectively impermeable, as reflected by equation (3.9a). However, this flow has an
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Figure 2. (a) Calculated streamlines in the mushy layer and melt. The flow in the mushy layer is
negligible compared to the flow in the melt. The contour levels of the streamfunction in the mush
are ±2× 10−2, ±10−2, ±5× 10−3 and ±5× 10−4 (decreasing in magnitude away from the interface,
positive values to the left of the crests). The contour levels of the streamfunction in the melt are
103, 3 × 103, 5 × 103, 7 × 103 and 9 × 103 (increasing in magnitude away from the interface). The
flow in the melt is calculated by treating the mush as impermeable and corresponds to flow past
a solid wavy boundary. (b) Schematic diagram indicating the effect of the perturbed flow in the
mushy layer and melt on the isotherms.

associated pressure field that can drive the weak flow (3.10b) in the mushy layer. It is
this latter flow that interacts with the temperature field to produce instability. This is
illustrated in figure 2, which shows the streamlines for sample parameter values and a
schematic diagram of the effect on the isotherms. The streamlines were calculated for
U = 104, Da = 10−8, Pr = 10, ζ0 = ζ1 = k = 1 and ε = 0.1. The contour levels in the
mush are chosen to reveal the weak flow there; this flow is negligible compared to the
flow in the melt. In the liquid region, the isotherms are compressed at the upstream
face of each crest and rarefied at the downstream face. This causes the upstream face
to melt and the downstream face to freeze, which gives a translation of the interface
shape in the direction of the basic flow. Thus, the effect of the flow in the liquid
on the amplitude of the interfacial perturbation is neutral. Moreover, the effect of
heat conduction is stabilizing so that, overall, laminar flow over a solid–liquid phase
boundary does not cause instability. However, the isotherms in the mushy region
are compressed near the crests, which enhances conduction of heat away from the
mush–liquid interface and promotes its advance. Conversely, the isotherms at the
troughs are rarefied and the advance of the interface is retarded. It is this mechanism
by which flow over a mush–liquid interface may cause a morphological instability of
the interface.

The interactions just described are now quantified by solving for the perturbations
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to the temperature field and interface shape given the flows described by equa-
tions (3.10a,b). By using the approximation that C � 1, the perturbed conservation
equations for heat and solute in the mushy layer

(D2 + ΩD− k2 − Ωσ)θ1 = Ωw1Dθ0, (3.11a)

(D− σ)φ1 =
1

Cw1Dθ0 (3.11b)

are uncoupled, while the perturbation equation for conservation of heat in the liquid
region is

(D2 + D− k2 − σ − iku0)θ1 = w1Dθ0. (3.12)

The boundary and interfacial conditions for these equations are

θ1 = 0 (z = 0), (3.13a)

θ1 + ζ1Dθ0 = 0, φ1 + ζ1Dφ0 = 0, [θ1]
m
l = 0, [Dθ1]

m
l + ζ1[D

2θ0]
m
l = 0

(z = ζ0), (3.13b–e)

θ1 → 0 (z →∞), (3.13f )

which are derived from (2.8a–f ).
The eigenfunctions can be found analytically. The temperature in the mushy layer

is

θm1 = ζ1θ∞A
{

e−Ω(z−ζ0)(cosh(kz)− σ

k
sinh(kz))− e(m1+Ω)ζ0

}
+ζ1θ∞B{em2(z−ζ0) − eXζ0}, (3.14a)

where

A =
−k

σ2 − k2

(Da/Pr)U2k2

cosh(kζ0)
, (3.14b)

B =
1

eXζ0 − 1

{
1 + A(cosh(kζ0)− σ

k
sinh(kζ0)− e(m1+Ω)ζ0 )

}
, (3.14c)

m1,2 = −Ω/2±X, (3.14d)

X = 1
2
(Ω2 + 4k2 + 4Ωσ)1/2. (3.14e)

The temperature in the liquid region is

θl1 = ζ1θ∞Ce−(k+1)(z−ζ0) − ζ1θ∞(1 + C)eq(z−ζ0), (3.15a)

where

C =
ikU

(k − σ − ikU)
, (3.15b)

q = − 1
2
− 1

2
(1 + 4k2 + 4σ + 4ikU)1/2. (3.15c)

In these expressions for the temperature, the growth rate σ (the eigenvalue) is deter-
mined from the Stefan condition (3.13e) which, upon substitution of the temperature
fields, becomes

(k + 1 + q)C + q + α+ βΥ =S/C, (3.16a)
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where

α =
(Da/Pr)U2

(σ2 − k2)
{eζ0(Ω/2−X)(Ω/2 +X)k3/ cosh(kζ0)

+k2(k2 + Ωσ) tanh(kζ0)− k3(Ω + σ)}, (3.16b)

β =
(X coth(ζ0X)− Ω/2)

(σ2 − k2)
, (3.16c)

Υ = k2 − σ2 + (Da/Pr)U2

{
eζ0(Ω/2−X)k3

cosh(kζ0)
− k2(k − σ tanh(kζ0))

}
. (3.16d)

We note that the growth rate is in general complex: σ = σR + iσI , where σR and σI
are real. The neutral curve is given by solving (3.16a) given σR ≡ 0 for the unknowns
U and σI . This requires the solution of a complex transcendental equation which was
performed numerically using a nested Newton–Raphson root-finding algorithm.

Since we expect the perturbed heat flux from the melt into the mushy layer to
have a neutral effect on the stability (principally producing a simple translation of
the interface shape), we arbitrarily simplify the analysis by ignoring this heat flux and
considering the resulting, simplified Stefan condition

α+ βΥ = Ω. (3.17)

Ignoring the perturbed heat flux from the melt removes translation of the interface
and gives a direct instability (σI ≡ 0). In this case, the neutral curve can be found
analytically to be

U2
n =

Pr

2Dak
(Ω + Y coth(ζ0Y /2))

{
− k tanh(ζ0k) + (1/2)

[
Ω + Y coth(ζ0Y /2)

−Y eζ0(Ω−Y )/2 (1 + coth(ζ0Y /2))

cosh(ζ0k)

]}−1

, (3.18a)

where

Y = (Ω2 + 4k2)1/2. (3.18b)

Note that Un ∝ (Pr/Da)1/2.
In figure 3, we show two neutral curves, (Da/Pr)1/2U versus k. Curve (a) is the

solution to the full Stefan condition (3.16a), which includes the perturbed heat flux
from the melt and is obtained numerically. Curve (b) ignores the heat flux from the
melt, is the solution of (3.17), and is given by (3.18a). We note that curve (b) is
independent of Da and Pr. The parameters used are Da = 10−8,Pr = 10, Ω = 11 and
θ∞ = 0.1.

It is clear that for these parameter values, the effect of the perturbed heat flux
from the melt is slight and stabilizing. At large U, the isotherms in the melt are
sufficiently deformed that the effect of the heat flux on the mush–melt interface is
almost completely to cause translation and is therefore neutral. This is indicated by
the curves (a) and (b) coinciding at small k. By ignoring the perturbed heat flux from
the melt, we obtain a good estimate for the neutral curve which gives a lower bound
on the flow rate required for instability to ensue.

The critical flow rate Ucrit is the minimum flow rate required to induce instability
which, for potential flow, is also the value of Un as k →∞. If we ignore the perturbed
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Figure 3. The neutral curve (a) is obtained numerically from the full Stefan condition (3.16a); curve
(b) is obtained by ignoring the perturbed heat flux from the melt (3.18a). The curves are plotted for
Da = 10−8, Pr = 10, Ω = 11 and θ∞ = 0.1. Ignoring the perturbed heat flux from the melt gives
a good estimate for the neutral curve. Also shown is the asymptote of curve (b) as k → ∞, this
corresponds to the critical flow rate required for instability.

heat flux from the melt then the critical flow rate is

Ucrit =

(
2Pr

DaΩ

)1/2

. (3.19)

This shows that the critical flow rate is inversely proportional to the square root of
the permeability.

Consider the neutral curves in figure 3. We see selectivity at small k (large wave-
lengths λ) since, as the mush–melt interface flattens, the Bernoulli effect weakens and
the stabilizing effect of thermal diffusion dominates. The most significant feature of
the neutral curve is the lack of selection at large k. This means we could expect
growth on infinitesimally small lengthscales, which is not observed nor expected. Our
asymptotic assumptions and the averaging procedure used to obtain the mushy-layer
equations and Darcy’s law will break down at sufficiently small λ and we might also
expect new physical effects to become important such as pressure-freezing. Inserting
new physics into the analysis could generate selection at small wavelengths but we
shall see that this is unnecessary.

By abandoning a no-slip (or small-slip) condition at the mush–melt interface, we
have allowed relatively large flows within the mushy layer. The destabilizing effect
of this flow can dominate over the stabilizing effect of thermal diffusion at all
wavenumbers k > 0. If we consider a viscous melt then there is a viscous boundary
layer at the mush–melt interface. The flows induced within the mushy layer are weaker
and flows with wavelengths small compared to the depth of the viscous boundary
layer are suppressed. The suppression of small-wavelength flows in the mushy layer
is because perturbations of the mush–melt interface with wavelengths smaller than
the viscous boundary layer depth are relatively unaffected by the large far-field flow
in the melt. This is elaborated upon and quantified in § 5.

4. Further approximations of the mushy layer
Before proceeding to a more complete analysis of the viscous fluid flow, we simplify

the mathematical description of the mushy layer as follows.
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We consider the limit of large Stefan number

S =
S̄

ε
, (4.1)

which is of O(1/ε), and assume that the solid fraction in the mushy layer is a constant
φm. This second assumption, which, though arbitrary, has led to good predictive
models of the evolution of mushy layers (e.g. Huppert & Worster 1985) eliminates
the need for the solute conservation equation, any dependence on C and the solid
fraction boundary condition. In particular, this implies that the earlier assumption
that C � 1 is relaxed. The effect of these two approximations on the Stefan condition
is to transform it to

φmS σ ζ1 = [ζ1θ
′′
0 + Dθ1]

m
l . (4.2)

This equation implies that σ = O(1/S) = O(ε), which implies the temperature fields
are sufficiently close to the equilibrium profiles determined by the boundary conditions
that the time dependences in the field equations should be ignored to O(ε). Because of
this, we shall refer to these two approximations as the quasi-stationary approximation.

The form of the steady, basic-state solution is essentially unaffected; the only
alterations are that Ω → 1 (no coupling of the heat and solute conservation equations)
and

θ∞ → θ̃∞ = θ∞ + S̄φm. (4.3)

The new perturbation equation in the mushy layer is

(D2 + D− k2)θ1 = w1Dθ0 (4.4)

and we do not need the equation in the melt since we ignore the perturbed heat flux
from this region.

Consider the effect of these approximations on the stability analysis of the preceding
section. We ignore the perturbed heat flux in the melt so that we have a direct
instability and the neutral curve is determined by the solution to (4.2) for U where σ ≡
0. The solution is given by (3.18a) with Ω → 1 and θ∞ → θ̃∞. These approximations
thus preserve the essential aspects of the instability for the case of uniform flow in
the melt. We take this as our justification for their adoption in the next section.

5. Linear stability analysis with shear flow in a viscous melt
In this section we present the linear stability analysis of the mush–melt interface

treating the melt as a viscous fluid governed by the Navier–Stokes equations. In
order to make the analysis analytically tractable, we employ the quasi-stationary
approximation and ignore the perturbed heat flux from the melt. We expect that the
effect of these approximations is to underestimate slightly the flow rate in the melt
required to induce instability and to remove the translation of the interface due to
the heat advecting into the interface from the melt.

We first describe the steady, basic-state and perturbed flows in the melt and
mushy layer. We substitute the solution for the mushy-layer flow into the perturbed
temperature equation which is then solved subject to boundary conditions. The growth
rate is given by the Stefan condition, which is used to determine the neutral curve.

The Navier–Stokes equations (2.7) admit a steady solution in the moving frame of
reference

u0 = (U∞(1− e−(z−ζ0)/Pr), 0), (5.1)
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where Pr = ν/κ is the Prandtl number, the ratio of kinematic viscosity to thermal
diffusivity. This is the asymptotic suction profile used by Forth & Wheeler (1992) in
a related analysis and discussed in Drazin & Reid (1981). It does not induce any
flow in the mushy layer, which remains stagnant in the basic state. The perturbed
steady-state Navier–Stokes equations are

−Du1 + u0 · ∇u1 + u1 · ∇u0 = −1

ρ
∇p1 + Pr∇2u1, (5.2)

where the first term is a pseudo-advective term due to the movement of the reference
frame. After some elementary manipulations to eliminate the pressure and using
incompressibility, we obtain the equations describing the perturbed flow in the melt{

Pr∇4 + ∇2D− u0∇2 ∂

∂x
+ u′′0

∂

∂x

}
w1 = 0, (5.3a)

∇ · u1 = 0. (5.3b)

Note that ∂w1/∂x = ikw1, so that (5.3a) is an ordinary differential equation. The first
term in (5.3a) is the viscous Stokes operator, which dominates within the viscous
boundary layer, the second term is due to the movement of the reference frame and
the remaining terms are due to advection.

The flows in the melt and mushy layer are linked by continuity of normal mass flux
(2.9b) and continuity of pressure (2.9c). In order to determine the flow in the melt, we
ignore the relatively insignificant vertical transport into the mushy layer. Combining
this with the no-slip condition, we have

u = 0 (z = ζ) (5.4)

in the melt. This implies to O(ε) that

w1 = 0, Dw1 = ikζ1u
′
0 (z = ζ0), (5.5)

which are the boundary conditions at the mush–melt interface. An extended discussion
of the boundary condition appropriate for flow past a wavy boundary may be found
in Tuck & Kouzoubov (1995). Far from the mush–melt interface the perturbed flow
in the melt must be zero,

lim
z→∞w1 = 0, lim

z→∞Dw1 = 0. (5.6)

The velocity w1 is the solution to the fourth-order ordinary differential equation
(5.3a) subject to (5.5) and (5.6). The horizontal component of the perturbed velocity
is obtained from this solution using (5.3b).

The pressure exerted at the mush–melt interface is determined from (5.2) to be

p1 =
Pr(D2 − k2)Dw1 + D2w1

k2
, (5.7)

where all derivatives are evaluated at z = ζ0. The imaginary part of the pressure
causes a flow which leads to translation of the mush–melt interface; the real part of
the pressure drives a potentially destabilizing flow. If the real part of the pressure is
negative then the flow in the mush is sucked in at crests and blown out at troughs,
which is potentially destabilizing.

We now discuss the method used to obtain the solution w1. We restrict the range of
integration to [0, 1] by expressing the problem in terms of the coordinate s = e−(z−ζ0)/Pr.
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This transforms the differential equation and boundary conditions to

{[(Pr−3)s4]D4 + [(5Pr−3)s3]D3

+ [(4Pr−3 − 2k2Pr−1 − ikPr−2U∞)s2 + (ikPr−2U∞)s3]D2

+ [(−2k2Pr−1 − ikPr−2U∞ + k2Pr−1)s+ (ikPr−2U∞)s2]D

+ [(Prk4 + ik3U∞) + (−ik3U∞ − Pr−2U∞ik)s]}w1 = 0, (5.8a)

w1 = 0, Dw1 = 0 (s = 0), (5.8b, c)

w1 = 0, Dw1 = −ikζ1U∞ (s = 1), (5.8d, e)

where D ≡ d/ds. We seek a Frobenius series solution of the form

w1 = sr
∞∑
j=1

Ajs
j . (5.9)

The indicial equation has four solutions for the index r, which are

r1,2 = ∓kPr, r3,4 = 1
2
(1∓ R), (5.10a, b)

where

R = (1 + 4kPr(iU∞ + kPr))1/2. (5.11)

A general solution for w1 is a linear superposition of four solutions of the form (5.9)
corresponding to the four values of the index r. The presence of the four different
scales of variation (r1 to r4) makes a numerical integration scheme based on the
method of shooting awkward. Since Re[r1,3] < 0 (except at k = 0), the solutions
containing sr1 ,r3 diverge as s → 0 and are thus excluded in order to satisfy (5.8b, c).
The solution is

w1 = λ1s
r2

∞∑
j=1

ajs
j + λ2s

r4

∞∑
j=1

bjs
j , (5.12)

where λ1 and λ2 are chosen to satisfy (5.8d, e) and are

λ1 =
−ikζ1U∞

∞∑
j=1

(r2 + j)aj − β
∞∑
j=1

(r4 + j)bj

, λ2 = −βλ1, (5.13a, b)

where

β =

∞∑
j=1

aj

/ ∞∑
j=1

bj. (5.14)

The coefficients aj and bj are determined from the recurrence relations

a0 = 1; aj+1 =
i(j + 1)U∞

(j + 2)(2j + 3− iU∞)
aj, (5.15a)

b0 = 1; bj+1 =
ikPrU∞( 3

2
+ 3j + j2 + ikPrU∞ + R( 3

2
+ j))

(2 + j)(2 + j + R)( 13
2

+ 5j + j2 + ikPrU∞ + R( 5
2

+ j))
bj. (5.15b)

At large j these recursion relations imply aj+1 ∼ aj/j and bj+1 ∼ bj/j
2 and thus the

series solution for w1 (and hence p1) is very strongly convergent. For large values of
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Figure 4. The real part of the vertical component of the perturbed velocity for (a) λ = Pr/5, (b)
λ = Pr and (c) λ = 5Pr. In (c), the perturbed flow extends well beyond the viscous boundary layer
and interacts with the far-field flow.
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Figure 5. The real part of the pressure at the mush–melt interface Re [p̂1(U∞,Pr, k)] versus
wavenumber k for U∞ = 100 and Pr = 10.

the parameters U∞, Pr and k, it is necessary to include many terms in the series and
it is important to work with sufficient numerical precision.

The real part of the perturbation flow in the melt drives a potentially destabilizing
flow in the mush through the pressure it exerts at the mush–melt interface. This flow,
Re[w1], is plotted for perturbation wavelengths λ = Pr/5, λ = Pr and λ = 5/Pr in
figure 4 for U∞ = 10 and Pr = 10. We see that the flow with perturbation wavelength
small compared to the viscous boundary layer depth does not extend beyond the
viscous boundary layer whereas the larger-wavelength perturbations extend into the
far-field flow.

The pressure is a function of the three parametersU∞, Pr and k and is obtained from
(5.7) using the series solution for w1. For convenience, we define p1 = ζ1p̂1(U∞, Pr, k).
The real part of p̂1 versus k is plotted in figure 5 for U∞ = 100 and Pr = 10. As k → 0
(λ→∞), the pressure p̂1 → −U2∞/Pr. Computational restraints prevent investigating
the limit k → ∞, since this would require the evaluation of too many terms in the
Frobenius series.

The flow in the mushy layer, described by (3.4), is coupled to the flow in the melt
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by (2.9c) to give the velocity potential

Φm1 = −ζ1

Da

Pr
p̂1 cosh(kz)/ cosh(kζ0). (5.16)

This flow is inserted into the quasi-stationary temperature equation (4.4), which is
solved subject to the boundary conditions (3.13a,b) to give the temperature in the
mushy region

θm1 =
ζ1(Da/Pr)p̂1θ∞

cosh(kζ0)

{
e−(z−ζ0) cosh(kz)

− 1

1− e2Qζ0
(2e(1/2+Q)ζ0e−(z−ζ0)/2 sinh(Q(z − ζ0))

+ cosh(kζ0)e
−(z−ζ0)/2(e−Q(z−ζ0) − eQ(z+ζ0)))

}
+

ζ1θ∞
1− e2Qζ0

e−(z−ζ0)/2(eQ(z+ζ0) − e−Q(z−ζ0)), (5.17a)

where

Q = 1
2
(1 + 4k2)1/2. (5.17b)

The quasi-stationary Stefan condition (4.2) explicitly gives the growth rate σ. Since
p̂1 is a complicated function of U∞, it is convenient to construct a neutral curve of
the Darcy number Dan required for instability to ensue. The neutral curve is obtained
from (4.2) with σR ≡ 0 to be

Dan =
Pr

Re[p̂1]

(
1 +

− 1
2

+ Q

1− e−2Qζ0
−

1
2

+ Q

1− e2Qζ0

)

×
{
− 1

2
+ Q

1− e−2Qζ0

(
−1 +

e( 1
2−Q)ζ0

cosh(kζ0)

)
−

1
2

+ Q

1− e2Qζ0

(
−1 +

e( 1
2 +Q)ζ0

cosh(kζ0)

)

−1 + k tanh(kζ0)

}−1

, (5.18)

where p̂1(U∞, Pr, k) is determined numerically. The viscous boundary layer introduces
a phase lag between the mushy-layer flow and the interface, causing the instability to
be slightly oscillatory even in the absence of the perturbed heat flux from the melt.
In order to treat the oscillatory part of the instability properly, however, we would
need to include the perturbed heat flux from the melt, which we have ignored.

The neutral curve is shown in figure 6 for U∞ = 100, Pr = 10 and θ̃∞ = 1. The
choice for θ̃∞ is made so that the depth of the mushy layer is comparable to that
considered for an inviscid melt. Also shown, for the equivalent parameter values,
is the neutral curve for uniform flow in an inviscid melt expressed in terms of the
Darcy number required for instability (dashed line). Two important features arise as
a result of including the viscosity of the melt: the instability is weaker (requiring
a more porous mush) and there is wavelength selection at large k. The instability
is strongest at the critical wavenumber kcrit = 2.56. A sinusoidal circulation cell in
the mush occupying the whole of the layer has a wavelength four times the depth
of the mushy layer, so that the wavenumber is 2π/(4ζ0) ≈ 2.27. Thus, the critical
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Figure 6. Neutral curve for a viscous melt, for U∞ = 100, Pr = 10 and θ̃∞ = 1. The crucial feature
is the wavelength selection at large k. The dashed line shows the inviscid result in terms of a neutral
Darcy number for equivalent parameter values.
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Figure 7. ln(kcrit) versus ln(ζ0) for U∞ = 100 and Pr = 10. The curve is very nearly
a straight line with a slope of −0.9.

wavenumber kcrit corresponds to a circulation cell occupying nearly all of the mushy
layer. In figure 7, we show a plot of ln(kcrit) versus ln(ζ0) for U = 100 and Pr = 10.
The curve is very nearly a straight line with a slope of −0.9± 0.02, indicating that the
critical wavenumber is nearly inversely proportional to the mushy-layer depth. This is
the result we expect given a critical circulation cell occupying nearly all of the mushy
layer. Numerical experiments show kcrit to be independent of the far-field flow in the
range 1 < U∞ < 103 and Prandtl number in the range 0.1 < Pr < 20 for θ̃∞ = 1.

The critical Darcy number required for instability to ensue is Dacrit(U∞,Pr, θ̃∞).
The variation of DacritU2∞ with U∞ for Pr = 10 and θ̃∞ = 1 (kcrit = 2.56) is shown
in figure 8. We see some curious behaviour at low U∞ (the curve is continuous),
which is due to a local maximum of |Re[p̂1]| at about U∞ = 20. However, this lies
outside the region of validity of the asymptotic analysis used to obtain the kinematic
boundary condition at the mush–melt interface (5.4). This is because, for such high
Darcy numbers, the vertical transport from the melt into the mushy layer cannot
be ignored. We are interested in very small Da and large U∞. In this regime, we
see that DacritU2∞ is only a weak function of U∞. This implies that the pressure p̂1

scales very closely with U2∞ for large U∞, which is advection-dominated flow; the
advection terms in (5.2) (the second and third terms) largely determine the pressure.



Instability of a mushy layer 353

Dacrit5∞
2

400

300

200

100

0
200 400 600 800 1000

5∞
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Figure 9. ln(DacritU2∞) versus ln (Pr) for U∞ = 100 and θ̃∞ = 1. The curve is very nearly
a straight line with a slope of 1.9.

Computational restraints prevent extending the curve out to higher U∞ but we expect
the trends to continue since increasing U∞ enhances the domination of the advection
terms. Note that if we approximate DacritU2∞ ∼ constant at large U∞ then this implies

Ucrit ∝ 1/Da1/2, which is the result obtained in the inviscid case.

In figure 9, we plot ln(DacritU2∞) versus ln(Pr) for U∞ = 100 and θ̃∞ = 1. The curve
is very nearly a straight line with a slope of 1.9 ± 0.006 ≈ 2, implying that Dacrit is
almost proportional to Pr2. This means that Re[p̂1] is approximately proportional to
1/Pr, which is also the dependence of p̂1 on Pr obtained exactly in the limit k → 0.

In order to investigate which feature of the flow in the melt is most important for
the instability of the mush–melt interface, we consider basic states of the form

u0 = (U∞(1− e−α(z−ζ0)), 0). (5.19)

If α = 1/Pr then our basic state satisfies the steady-state Navier–Stokes equations;
this corresponds to the case already investigated. If α 6= 1/Pr then the basic state
is time-dependent and the linear stability analysis is quasi-static: we consider the
basic state to be frozen in time. Assuming a basic-state flow of this form introduces
another parameter into the series solution for the pressure but the analysis differs
only slightly from the steady-state case. In figure 10, we show a plot of ln (DacritU2∞)
against ln(α) for U∞ = 100,Pr = 10 and θ̃∞ = 1. The critical wavenumber kcrit = 2.56
throughout. The curve is very nearly a straight line with a slope of −0.9 ± 0.07. If
we consider DacritU2∞ ∼ constant at large U∞ then this implies approximately that
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Figure 10. ln (DacritU2∞) versus ln (α) for U∞ = 100,Pr = 10 and θ̃∞ = 1. The curve is very nearly
a straight line with a slope of −0.9.

Ucrit ∝ α−0.45. This means Ucritα
0.45 is almost independent of the basic state (through

α) and can be considered to be the driving force for the instability. The critical shear
at the mush–melt interface is Scrit = αUcrit. Our result suggests that the geometric
mean of Scrit and Ucrit, which is α1/2Ucrit ∼ α0.45Ucrit, is crucial to the instability.

6. Discussion
Sea ice forms in polar oceans due to the freezing of seawater and is an extremely

important part of the Earth’s climate system due to its extent and the role it plays
as a barrier to the transfer of heat, mass and momentum between the atmosphere
and ocean. It is also important in deep water formation, which drives large-scale
ocean circulations. We model sea ice as a mushy layer consisting of almost pure
ice immersed in brine (concentrated salt solution). It has been suggested (Wettlaufer
1991) that the relative flow of the upper ocean past sea ice is responsible for a wavy
sea-ice–ocean interface due to the instability mechanism of Gilpin et al. (1980). The
mechanism presented in this paper might also be responsible for the development of
a wavy sea-ice–ocean interface. In this section, we present a short summary of the
instability mechanism of Gilpin et al. and compare the potency of this mechanism to
that presented in this paper for the case of newly forming sea ice.

Typical sea-ice parameter values for newly forming sea ice are Π = 10−10 m2,
µ = 1.1× 10−3 kg m−1 s−1 and ρ = 1.027× 103 kg m−3 (giving ν = 1.07× 10−6 m2 s−1),
κ = 1.33 × 10−7 m2 s−1, V = 10−6 m s−1 and S = 4.2. These values approximately
give Da = 10−8 and Pr = 10, we choose θ̃∞ = 1 to give an appropriate sea-ice depth
of (κ/V ) ln(1 + 1/θ̃∞) ≈ 7 cm. The arguments and sources for these parameter values
can be found in Feltham (1997). A typical far-field flow rate is 0.1 m s−1 (inferred
from data in Omstedt & Wettlaufer 1992), which gives U∞ ≈ 105. Computational
restraints prevent calculation of the neutral curves much beyond U∞ ≈ 103. However,
we can extend the curve in figure 8 out to U∞ ≈ 105 (extrapolating from a log-log
plot) on the basis that we are dealing with advection-dominated flow. By treating
DacritU2∞ ≈ 400 we have, for Da = 10−8, a dimensional critical far-field flow rate
of 0.2 m s−1, which is equivalent to a dimensional critical shear of 0.2 s−1. This flow
rate is rather high but within the observed range, suggesting that our instability is
important. We expect the wavelength of corrugations of the sea-ice–ocean interface to
be of the order of the sea-ice depth, with a wavenumber of 25.6 m−1 (corresponding
to a wavelength of 0.25 m).
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Figure 11. Neutral curves showing the dimensional shear at the sea-ice–ocean interface versus
dimensional wavenumber for Gilpin et al. ’s mechanism. The shear rate required for instability is
approximately 125 times larger than for our mechanism and the critical wavenumber is approxi-
mately 3 times smaller.

Gilpin et al. present an instability of a plane solid–melt interface due to a turbulent
flow in the melt. If the turbulent heat flux into the solid–melt interface is out of phase
with incipient corrugations by greater than π/2 and less than π then the heat flux is
enhanced near troughs and retarded near crests. This causes the perturbations to grow
and move downstream. In the analysis of Gilpin et al., the heat flux into a wavy ice–
water interface was determined by fitting experimental data for finite perturbations
to an expression determined by Ashton (1972). This expression is used in a linear
stability analysis for perturbations to the ice–water interface to determine a neutral
curve. In this analysis, the length- and timescales are ν/u∗ and ν/u∗2 respectively,
where u∗ is the (dimensional) friction velocity, given by

u∗ =

(
ν
∂U

∂z

∣∣∣∣∣
interface

)1/2

, (6.1)

where U is the local mean flow in the melt. This expression is true for both turbulent
and laminar flows though the friction velocity is typically much larger for turbulent
flow.

Gilpin et al.’s neutral curves (their figure 7) show the critical Reynolds number
Re = u∗d0/ν (based on the friction velocity and constant ice depth d0) against
the scaled wavenumber k+ = kν/u∗ (k is the dimensional wavenumber) for several
situations. We are interested in their G = 1 curve which corresponds to a steady,
stationary, basic state with a constant ice depth. The choice of scalings implies that
the critical wavelength of the instability scales on the depth of the ice layer; since
the cause of the instability is the turbulent heat flux from the melt, this seems
inappropriate. Since Gilpin et al. used an expression for turbulent heat flux into an
interface with finite perturbations, their analysis is inconsistent. In practice, they were
only able to trigger their instability by melting large (several centimetre) perturbations
into an ice–water interface.

For a particular set of parameter values, we can convert Gilpin et al.’s neutral curve
into a plot of shear S = ∂U/∂z at the interface against a dimensional wavenumber k
and compare this with the critical shear for our mechanism (0.2 s−1). We set d0 = 7 cm
and ν = 1.07 × 10−6 m2 s−1 and obtain the shear using (6.1). In figure 11, we plot
the neutral curve of shear versus wavenumber for Gilpin et al.’s mechanism, which
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we see requires a minimum shear of 25 s−1 at the critical wavenumber of 8 m−1

(corresponding to a wavelength of 0.79 m). For a laminar velocity profile such as we
have assumed in our analysis, this corresponds to a far-field flow rate of 25 m s−1,
very much higher than observed values.

Since our instability mechanism requires a shear about 125 times smaller than
Gilpin et al.’s for newly forming sea ice, we conclude that our instability mechanism
is likely to be more important. Also, since each mechanism predicts a different
wavelength of corrugation, this may be a way to distinguish which mechanism is
responsible for any observed corrugations.

7. Conclusions
The most important result is that a laminar flow in the melt can trigger an instability

of a mush–melt interface by inducing a flow in the porous mush and melt which
deforms the isotherms. It was shown that the perturbed heat flux from the melt
into the mush–melt interface had almost the sole effect of translating corrugations of
the interface and thus was neutral to the instability. The perturbed heat flux in the
mushy layer can cause perturbations to grow and drives the instability. The coupling
of the thermal and solutal fields in the mushy layer is inessential for the instability
and this coupling was removed in the consideration of a viscous melt. The strength
of the instability varies with the perturbation wavelength due to the weakness of
the Bernoulli effect at large λ (the interface flattens) and the presence of a viscous
boundary layer, which causes a small-λ cut-off.

For a viscous melt, DacritU2∞ was found to be a weak function of U∞ for large
U∞, which corresponds to advection-dominated flow in the melt. This implies that
Ucrit is almost proportional to 1/Da1/2, which is the exact result obtained for inviscid
flow. For a viscous melt, Dacrit is approximately proportional to Pr2. The critical
wavenumber approximately scales on the reciprocal of the mushy-layer depth and is
independent of the flow parameters.

By considering a set of basic states with a flow in the melt parallel to the mush–
melt interface of the form U∞(1− e−α(z−ζ0)), we gained insight into the features of the
basic-state flow essential for the instability. It seems both the far-field flow in the melt
and the shear at the mush–melt interface play a role but that their geometric mean
may be the crucial controlling parameter.

Throughout this study we have ignored the existence of the hydrodynamic modes
which can develop. For flow past a plane interface, numerical solutions of the Orr–
Sommerfeld equation predict that these modes are triggered at Reynold numbers
greater than 47,047 (Drazin & Reid 1981) although the waviness of the interface may
lower this threshold. An interesting study would be to investigate the interactions
between the hydrodynamic modes and the morphological modes presented here.

For newly-forming sea ice, our instability mechanism requires a shear about 125
times smaller than Gilpin et al.’s mechanism, which suggests it is more important. Our
instability mechanism is likely to result in corrugations of the sea-ice–ocean interface
with a wavelength comparable to the sea-ice depth.

We are grateful for discussions with J. S. Wettlaufer. M.G.W. is supported by the
National Environment Research Council.
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